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Let G be a striciRS-set (resp. an RS-setrand letF be a bounded (respotally bounded) subset
of X satisfyingrg (F) > rx (F), whererg (F) is the restricted Chebyshev radiusFofvith respect
to G. It is shown that the restricted Chebyshev centdF @fith respect taG is strongly unique in
the case wheiX is a real Banach space, and that, under some additional convexity assumptions, the
restricted Chebyshev centerfeivith respect tds is strongly unique of order > 2 in the case when
Xis a complex Banach space.
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1. Introduction

Let X be a Banach space over the fiéldvhereF = R, the reals, off = C, the complex
plane. LetG be a closed nonempty subsetfFor a bounded subsEtof X, an element
go € Giscalled arestricted Chebyshev centefFafith respect tas (or a best simultaneous
approximation td- from G) if it satisfies that

supllx — goll < sup|lx — g|| foreachg € G.
xeF xeF
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The set of all restricted Chebyshev centerE ofith respect tds is denoted byPg (F), that
is,

PG (F) = {go € G: suplx — goll = rG(F)} ;

xeF

whererg (F) is the restricted Chebyshev radiusrofvith respect tds defined by

rg(F) = inf supljx — gl
8€G xeF

Motivated by the work of Rozema and Smijft6], Amir [1] introduced the concept of an
RS-set in a real Banach space and then gave the uniqueness results for the restricted Cheby-
shev center with respect to &8-set. Recently, there are several papers concerned with the
unigueness of the best approximation fromRBrset, see, e.g., [9,13,14]. Surprisingly, the
strong uniqueness of the restricted Chebyshev center with resped®® s@t have not been
paid attention so far although it has been studied for the case Ghigmn interpolating
subspace in [8,10] independently. The first part of the present paper is to generalize the
strong uniqueness results on the case wh&nan interpolating subspace to the case when
Gis anRS-set. As will be seen in Section 3, this generalization is not trivial. In fact, for this
end, we need to establish a general strong uniqueness theorem for the restricted Chebyshev
center with respect to a polyhedron of finite dimension in a Banach space.

On the other hand, motivated by the work in real Banach spaces, one problem may
be of interest: can one develop a similar theory R8-sets in complex Banach spaces?
This problem has never been considered before. It is not difficult to defiRSaset in a
complex Banach space similar to one in a real space. However, when we try to establish the
same strong uniqueness results folRBset in a complex Banach space, we find that it is
completely different from that in a real space. First, the restricted Chebyshev center with
restrict to arRS-set in a complex Banach space may not be unique in general; and secondly,
the restricted Chebyshev center is not strongly unique evenin the case whenitis unique. The
second part of the present paper is to establish some results on strong uniqueness of order
o> 2 for the restricted Chebyshev center with respect t&R8rset in a complex Banach
space.

We conclude the section by describing the organization of this paper. In the next section,
we use the notion of the strong CHIP, which is taken from optimization theory and plays
an important role there, to verify the characterization theorem of the restricted Chebyshev
center with respect to aRS-set and some basic facts, which are used in other sections. In
Section 3, we consider the strong uniqueness of the restricted Chebyshev center with respect
to anRS-set in a real Banach space. We first establish a general strong uniqueness theorem
for the restricted Chebyshev center with respect to a polyhedron of finite dimension and
then prove that, for any totally bounded subset (résinded subseB of X with rg (F) >
rx (F), the restricted Chebyshev centerd-afith respect tds is strongly unique provided
thatGis anRS-set (resp strictRS-set) in areal Banach space. Finally, in the last section, the
unigueness and the generalized strong uniqueness of the restricted Chebyshev center with
respectto aRS-setin a complex Banach space are studied. We first give an counter-example
to illustrate that, for a totally bounded subsesatisfyingrg (F) > rx(F), the restricted
Chebyshev center with respect toR8-set is not unique in a complex Banach space. Then,
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under some additional convexity assumptions, we show that, for any totally bounded subset
(resp.bounded subsef) of X with rg(F) > rx(F), the restricted Chebyshev centerd-of

with respect tds is strongly unique of order> 2 if G is anRS-set (respa strictRS-set) in

a complex Banach space.

2. Preliminaries and characterizations

We begin with some basic notations, most of which is standar§3(¢f.In particular, for
a setA in a Banach space, the interior (resp. closure, convex hull, convex cone hull, linear
hull, boundary) ofA is defined by intA (resp.A, convA, coneA, spand, bdA). Also we
adopt the convention that Re= « in the case when is a real number.

LetY be a subspace of. For a nonempty convex closed subGeif Y, the normal cone
Nc(x) of Catxis defined by

Ne(x)={z"eY*: Re(z",y —x)<0 forally € C}. (2.1)
Letx € /L, Ci. Thus, following[5,11], a collection{C1, C2, ..., C,,} of convex closed

sets inY is called to have the strong conical hull intersection property (CHIR)ilaand
only if

Ny ¢, (x) =Y Ne, (x). (2.2)
i=1

Letf be a proper convex continuous function definedroihen, as ifl1], the subdiffer-
entiable off atx is denoted by f (x) and defined by

0f(x) ={z"eY*: f(x)+Relz",y—x)<f(y) forally e Y} (2.3)

Let B* denote the closed unit ball of the duaf and extB* the set of all extreme points
from B*. Let B* be endowed with the we&kopology. TherB* is a compact Hausdorff
space. We usextB* to denote the wedkclosure of the set e8*. For a bounded subsEt
of X, define

Ur(x*™) = supRe(x, x*) for eachx™ € B* (2.4)
xeF
and
%y : * * *
Up (x™) = 0€|1r\}1:x* ;22 Upw*) foreachx™ € B, (2.5)

whereN (x*) denotes the set of all open neighborhoods arotiid B*. From[7], see also
[19,20], we have the following proposition:
Proposition 1. Let F be a bounded subset of X anddlg}f be defined by2.5).Then

() U;f iS upper semi-continuous @i and
sup {Ujf (x*) — Re(x*, g)} = sup|lx — g|| for eachg € X; (2.6)

x*eB* xeF

(i) if F is totally bounded[/ is continuous and/;" = Uy onB*.
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Lemma 1. Letg € X. Then

sup {Uj(x*) — Re(x*, g)} = supllx — g (2.7)

x*eextB* xeF

Proof. By the well-known Krein—Milman theorem, we have that

Supcr lIx — gll = sup [Ur(x*) — Re(x*, g)}

x*eB*

= sup {Ur(x*)—Rex* g)}
x*eextB*

< sup {UF () —Relx*, )}
x*eextB*

< sup {UF (") — Re(x*, g)}
x*eB*

= supllx — gl
xeF

This completes the proof.lJ

Letg € X and letF be a bounded subset ¥f Define

Mp_g = {x* € extB* : Uf (x*) — Re(x*, g) = supl|x — g||} ; (2.8)
xeF

Ep_g = {x* e extB*: Up(x*) — Re(x™, g) = sup|lx — g||} ) (2.9)
xeF

Note that, by Lemma 2.1Mr_, is a nonempty wedkcompact set. Furthermore, ifis
totally bounded, so i€ r_.
Let fr denote the convex function dhdefined by

fr(g)= sup {Uf(*)—Rex* g)}, geV. (2.10)

x*eextB*

For a subse of X*, let
Mly ={"ly e Y*: 2" € M}, (2.11)

wherez*|y denotes the restriction of the functiorzdlonY. Then the subdifferential of the
function fr is given by the following lemma:

Lemma 2. Suppose that is a finite-dimensional subspace ®hXn

0fF(g) = —COMF_gly. (2.12)

In addition,if F is totally bounded,

0fr(g) = —COEF_|y. (2.13)
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Proof. Letx* e extB* and define

fra(g) = Uy (x*) — Re(x*, g) foreach geY. (2.14)
By the definition, it is easy to show that the subdifferentiafgf.- atg € Y

OfF.x+(8) = —x"|y. (2.15)
It follows from [12, Theorem 3.1] that

0fr(g) =CoV0frx(8): frax(g) = Sup fr(g)¢. (2.16)

7*eextB*

Clearly, Mp_; = {x* € extB* : fF x+(g) = SUR.cexim+ fF.2*(g)}. Hence (2.12) follows
from (2.15) and (2.16).

Now assume thdt is totally bounded. Then, by Proposition 2.1(ii), for ea¢he Mr_,,
we have that

Ur(x™) — Re(x", g) = sup|lx — g (2.17)
xeF
Takex € F suchthat R&c*, x) —Re(x*, g) = sup,cr llx —gll. By Singerff17, Lemma 1.3,
p. 169], there existy, ..., x; € extB* (1<k<2dimY) and positive number,, . .., A
with Y%, J; = 1 such that
k

k
(%) =A%) and xfly =Y Aixfly. (2.18)
i=1 i=1

This with (2.17) implies that* € Er_, foranyi = 1,2, ..., k; hencex*|y € COEr_gl|y
and (2.13) is proved. [J

Let{y1, y2, ..., y»} benlinearly independent elements Xf Define

n
G:{g:Zciy,': cie],'}, (2.19)
i=1

where eacly; is a subset of the fielll of one of the following types:

(1) the whole off;
(1) a nontrivial proper convex closed (bounded or unbounded) sub$etih nonempty
interior;
(11 a singleton ofF.

Let Z denote the subspace spanned{by, y2, ..., y,}. For eachi, define the linear
functionalc; onZ by

n

ci(9) =c¢; foreach g=> c;y. (2.20)
i—1
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Let/ = {1,2,...,n}and letlp and/; denote the index sets of albuch that/; is of the
type (I1l) and (Il), respectively. Set

1(g) ={i € I1: ci(g) € bdJ},

0i(g) = —Ny (ci(g) \ {0} foreachi € I1
and

Y={geZ: ci(g) =0Viel).

The following theorem gives the characterization of a restricted Chebyshev center with
respect to the sé given by €.19).

Theorem 1. Suppose that G is defined (®.19)and F C X is a bounded subset. Let
go € G. Thengg € Pg(F) if and only if there exisd(F — go) = {a].a5,...,a;} C
Mp_g,, B(go) = {i1,i2,....im} € 1(g0), 0i; € 0i;(g0), Jj =1,...,m (with1+
m<k+m<dimY +1ifF=Randl+m<k+m<2dimY + 1if F = C) and positive
scalarsiy, Ao, ..., Ak such that

k m

> ilaf.g)+ Y ci;(g)5;,; =0 foreach geV. (2.21)
i=1 j=1

In addition,if F is totally boundedMr_g, can be replaced witlk .

Proof. We will prove the theorem only for the case wheis bounded since the case when
F is totally bounded is similar.
For each € I, define,

Ci={geY: ci(g+ci(go) € Ji}.

Itis clear thatg € G ifand only if g — go € C N Y whereC :=,,, Ci. Note that

ielp

supllx — gll = supllx —go— (g —go)ll = sup [lx — (g — go)ll-
xeF xeF xeF—go

We get thatgg € Pg(F) if and only if 0 € Pcny (F — go). We now consider the problem
in the finite-dimensional spadé Thus, by Lemma 2.0 € Pg(F) if and only if O is an
optimal solution of the minimization problem &fgiven by

miN fr_g,(g) (2.22)

subject tog € C. Since there exists an elemehie G satisfyingc; (¢) € int J; for each

i €I, int(;c;, Ci # ¥, hence, by Deutsch et 46, Proposition 3.1], the collection of
convex setdC; : i € I1} has the strong CHIP. From [4], the following assertions are
equivalent:

(i) 0is an optimal solution of the minimization problem (2.22) subje¢f to C;
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(ii) there existy* € 0 fr_4,(0), x}' € N¢;(0) (i € I1) such that

Y+ xf=0 onv. (2.23)
iel
Note that
Nc;(0) = {x* e Y*: & € Nj(ci(go), «j =0Vj eI\ o, j#i}, (2.24)

whereo; := (x*, y;) for j € I. Clearlyi ¢ I(go) if and only if ¢;(go) € int J;. Hence,
Ny (ci(go)) = 0 andN¢,; (0) = 0 in the case when¢ 1(go). By (2.24), in the case when
i € I(go), x; € N¢,;(0) if and only if there exists; € Ny, (c;(go)) such that

(xf,g) =ci(g)5; foreachg €Y. (2.25)

Moreover, by Lemma 2.2;* can be expressed as
k
—y*=> wa’ ony (2.26)
i=1

for somea* € My_gy, (i = 1,2,...,k) andy; > Owith Y°5_; i; = 1. Hence, by (2.25)
and (2.26), (i) holds if and only if there exigt € Mr_4, 4 >0 =1,2,...,k, k> 0)
andoci/. € 0i(go) (ij € I(go), j =1,2,...,m)such that

k m
Z)»,- (af, g) + ZCU (g)oq; =0 foreachg €Y. (2.27)
i=1 j=1

Moreover, when (2.27) hold, we can have the additional property:

dmY +1 ifF=R,

Lrmskams {2dimY+1 it F = C.

(2.28)

In fact, assume that diti = [ and, without loss of generality, I€t1, ..., y;} be a basis of
Y. LetV andi/ denote the convex hull of the sdi§a’’, y1), (a’, y2), ..., (a], y)) : i =
1,2,...,k} and{(c,-_/. (1), ¢i;(y2), - ci;(v))o;  j=1,2,...,m}, respectively. Since
there exists an elemedte G satisfyinge; (g) € int J; foreach e I1, we have that@ cold.
Hence, (2.27) holds if and only if @ co(V Ul/). Thus, by the Caratheodory Theorem (cf.
[2]), we can select subsets pff : i =1,2,...,k}and{o;; : j =1,2,...,m}, denoted
by themselves, such that (2.27) and (2.28) are satisfied. As we already gipte®g; (F)

if and only if (i) holds. Therefore, the proof is completd.]

Now let us introduce the concept BS-sets in Banach spaces over the field

Definition 1. An n-dimensional subspa&eof a Banach spac¥ over the fieldF is called

an interpolating subspace (resp. a strictly interpolating subspace) if no nontrivial linear
combination o linearly independent points from the set BXt(resp.extB*) annihilates

G.
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Remark 1. Note that Ann-dimensional subspaceof a Banach spack over the fieldF
is an interpolating subspace (resp. a strictly interpolating subspace) if and only if for any

linearly independent points’, . .., x;; from the set exB* (resp.extB*) and anyn scalars
c1, ..., cy € [Fthere exists uniquely an element Z such that

(x,g)=¢; foreachi=1,2=..- n.
Definition 2. LetXbe a Banach space over the fiéldnd let{ys, y2, ..., y,} benlinearly

independent elements of We call the seG defined by (2.19) aiRS-set (resp. a strict
RS-set) if every subset 6f1, y2, ..., yn} consisting of ally; with J; of type (1) and some;
with J; of type (I) spans an interpolating subspace (resp. a strictly interpolating subspace).

Remark 2. In the case off = R, the definition of anRS-set was introduced by Amir
[1]. However, in the case df = C, it seems the first time that the notion of B$-set is
introduced.

Finally we still need the following lemma, which plays an important role in the coming
two sections.

Lemma 3. Suppose G is a strict RS-ge¢sp.an RS-setin X over fieldF. Let F ¢ X be a
bounded subsétespa totally bounded subsetatisfying¢ (F) > rx(F)andgg € Pg(F).
LetA(F —go) = {af, ..., a5} € Mp_g, (r€SP.EF—g,) aNdB(go) = {i1, ..., im} S 1(g0)
with positive numbergs, ..., 4; satisfy(2.21).Then there are at leastimY — m linearly
independent elements M(F — go).

Proof. As before, we prove the lemma only for the case whésbounded. Set
O={geY: =0 j=1,...,mh (2.29)

ThenQ is an strictly interpolating subspace of dimensign= dimY — m. With no loss
of generality, we may assume thgt . .., a; are linearly independent and (2.21) can be
rewritten into

14 m
Zz; (a’, g) + Zaij (g0)ci;(g) =0 foreach gev. (2.30)
i=1 j=1

To complete the proof, it suffices to show tkap N. Suppose on the contrary thidt< N.
SinceQ is a strictly interpolating subspace of dimensign= dimY — m, by Remark 2.1,
there exists an elemegy € Q \ {0} such that

@ qoy =4, i=1.Kk,
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which with (2.30) impIiest.‘/:1|/1/,~|2 = 0 and so/; = O for eachi = 1,2,... k.
Consequently,

k

k/
Z}»i(a;k, g) = Z/l;(a;‘,g) =0 forallg € X.
i=1 i=1

This implies thatgg € Px(F), which contradicts thatg(F) > rx(F). The proof is
complete. [

3. Strong uniqueness in real Banach spaces

In this section we always assume tlrat R, i.e., X is a real Banach spacé We begin
with a general theorem on the strong uniqueness of the restricted Chebyshev center with
respect to a finite-dimensional polyhedron.

Definition 4. A closed convex subs@& of X is called a polyhedron if it is the intersection
of a finite number of closed half-spaces, that is,

k
G = m{x € X: (xf,x)<d;}
i=1

for somex* € X* \ {0} and real scalarg;. A closed convex subsés of X is called
a polyhedron of finite dimension if it is the intersection of a polyhedron and a finite-
dimensional subspace ¥t

Theorem 1. Let G be a polyhedron of finite dimension oflét F c X be bounded and
go € Pg(F). Suppose that the strict Kolmogorov condition

max {(a*,go—g) >0 foreachg € G\ {go) (3.1)

a*eMp_gO
holds. Thergg is strongly uniquethat is,there exists a constant= r(F) > 0 such that

supllx — gl > supllx — goll +rllg — goll for eachg € G. (3.2)

xeF xeF
Proof. Assume that
k
G=()xeX: (. x)<d}
i=1
for somex; € X* \ {0} and real scalarg;. For convenience, we writt= {1,2, ..., k},
Io={iel: (x, g)=d forall g € G} (3.3)
and

Hi={geG: (x,g)=d;} foreachi el (3.4)
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Forg € G, set
J(g)={iel: geH} (3.5
and, if J(go) # 1,
Go = U H;.
i¢J(g0)

Note that, in the case whef(go) # I, Go is a nonempty closed subset®@fandgo ¢ Go;
hencer* = d(go, Go) > 0. For eacty € G \ {go} and eachl > 0, define

A A
T,(g) = (1— )go+ g
llgo — gll llgo — gl

Set

e[ TG £ 1
11 ifJ(g) =1

First, we will show that
T,<(g) € G foreachg € G. (3.6)

Indeed, itis trivial in the case wheh(gp) = 1. Therefore, we may assume thidleg) # 1.
Let/T ={iel: (x}', T;«(g)) > d;}. Suppose on the contrary thBt(g) ¢ G. Since
(x], T;=(g)) <d; for eachi € J(go), we have that

I*#¢ and I"()J(g0) =2. (3.7)

Foreach € IT, let0< /; < r* satisfy(x, T;.(g)) = d; and letA = min;c,+ /;. Then,
for eachi € I't,

(xi', Ty, (g)) <d. (3.8)

Clearly, (3.8) holds for eache I \ I since O0< / < t*. HenceT,(g) € G. Moreover,
by the definition ofA, we have that/ (T;(g)) N I # @. Takeig € J(T;(g)) N IT. Then
T,(g) € Hi,. By (3.7),i0 ¢ J(go). HenceT,(g) € Go. This implies that

1" =d(go, Go)<llgo— Ti()ll = A <17,

which is a contradiction, This proves thBt (g) € G.

Secondly, we will show that
Aa*, go —
— inf max 29080784 (3.9)
geG\{go}a*eMr—g;, |80 — gl

For this purpose, let

e
7(g) = max 4 {a”. 80— 8) (3.10)
a*eMr_g g0 — gl
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and suppose on the contrary that there exists a seqigrnce G \ {go} such that(g,) —
0 asn — oo. Due to the compactness, we may assume%ﬁ% — g # 0. Since

80— 28 — Ty (3), by (3.6),80 — 5225 € G. Consequentlyo — & € G \ {go).

I | lgo—gnll
Howevgeor ¢ soms
max (a*, go— (go— &) = lim y(g,) =0, (3.11)
a*eMF7g0 n— 00

which contradicts to (3.1). Hence (3.9) holds.
Finally, from (3.9) we have that

vllgo — gll

max (a*, go— g)>—-—— foreachg € G. (3.12)
(l*EMF_gO A
Letag € Mp_g4, be such that
(a5, go—g) = _max (a*, go— g). (3.13)
a*EMF—gO

Thus, by Lemma 2.1, (3.12) and (3.13), we have that

> Uy (ag) — (ag. 8)
= U} (ag) — (ag. 80) + (ag. g0 — 8)
> SUBcr X — goll + = ligo — gl

SUpcr [lx — gl

forall g € G, that is,gg is strongly unique. The proof of the theorem is completel
Now we are ready to give the main theorem of this section.

Theorem 2. Suppose that G is a real strict RS-¢edsp.a real RS-setand thatF c X
is a bounded subsétesp.a totally bounded subsesptisfyingrg (F) > rx (F). Then the
restricted Chebyshev center of F with respect to G is strongly unique.

Proof. We prove the theorem just for the case wikeis bounded. Legg € P (F). By
Theorem 3.1, we only need to show that the strict Komogorov condition (3.1) holds. Suppose
on the contrary that there exisis € G \ {go} such that

max (a*, go — g1) <0. (3.14)

u*GMF,gO

Then from Theorem 2.1, there existF — go) = {al, as,...,a;y € Mp_gy, B(go) =
{it. iz, ... im} S 1(g0), 0i; € 0i;(g0), j=1,....m and posmve scalargy, Ao, ..., A
such that

k m
> lilaF. 81— go) + Y _cij(g1— go)ai; = 0. (3.15)
i=1 j=1
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By the definition ofaij (80),0i; #0 anda,-j cij(go—g1)<0, j=1,....,m. It follows that

k m
0> Jilaf, go—g1) = — Y _ 0i;ci; (g0 — g1) >0.
i=1 j=1

This implies that
(a;k,go—g1>=0, i=1,...,k (3.16)
cij(go—g1) =0, j=1....m. (3.17)

Hence,go — g1 € O, whereQ is defined by (2.29). Sincé is a strictRS-set, by Lemma
2.3, A(F — go) contains at least difi — m linearly independent elements. Moreover,
is a strictly interpolating subspace of dimension dim- m. Thereforegg = g1, which
contradicts thag1 € G \ {go}. The proof is complete. [J

Remark 1. In the case whef is a strictly interpolating subspace (resm interpolating
subspace) oK. Theorem 3.2 was proved independentl{8r10].

4. Generalized strong uniqueness in complex Banach spaces

In this section we always assume that C, i.e.,Xis a complex Banach space. We begin
with a counter-example which illustrates that the restricted Chebyshev center with respect
to anRS-set is, in general, not unique in a complex Banach space.

Example 2. Let Q0 = {—1,0, 1} andX = C(Q), the complex continuous function space
defined omQ with the uniform norm. Define

1
g1(t) =1, g2=1-75 vVt e Q,
Ji={zeC:Rez>1}, b ={zeC:Rez<1l}

and

Then,G = {g = c1+c2(t — 3) : Rec1>1, Rec,<1}. Take

1=1+ t—} *—1+i—+ 1+i— t—}

Obviously, || f — g;ll = |(f — g})(0)| = 3. Since, forang = c1+c2 (1 — 3) € G,

1

If—gl=I(f — &) = Z5

Cc1 — ECZ
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we have thag; € Pg(f). On the other hand, it is easy to check that

1
If =& lII<I(f —g2)(O)] = >
so thatg; € Pg(f).

However, the following theorem shows that, under some additional convexity condition
on J;, the restricted Chebyshev center with respect tdr&3set is unique. Recall that
a convex subsel of C is strictly convex if, for any two distinct elements, z2 € J,
%(zl +z2) €int J.

Theorem 1. Suppose that G is a strict RS-ggésp.an RS-setand thatF C X is

a bounded subsdtesp.a totally bounded subsefatisfyingrg(F) > rx(F). If each

Ji (i € I1) is strictly convexthen the restricted Chebyshev center of F with respectto G is
unique.

Proof. Suppose thaPg (F) has two distinct elementg;, go. Write go = (g1 + £2)/2.
Then, using standard techniques, we have that

Mp_gy C Mp_g N Mp_g, € {a* € extB*: (a*, g1 — g2) = O} (4.1)
and, by the strict convexity of each (i € I1),

1(g0) € 1(g1) N 1(g2) S {i: ci(g1— g2) =0} (4.2)
Let

Qo={geP: ci(g)=0, iel(go)l (4.3)

In view of the definition of a stridRS-setQg is a strictly interpolating subspace of dimension
dimY —|1(go)|, where|I (go)| denotes the cardinality of the skfgo). Clearly,g1 — g2 €
Qo. It follows from Lemma 2.3 thaidMr_,, contains at least dirif — |7(go)| linearly
independent elements. Henge— g> = 0 and the proof is complete.[]

Now let us consider the problem of the strong uniqueness of the restricted Chebyshev
center with respect tG. We first introduce the following definition of strong uniqueness of
ordera, see, for exampld15,18,21].

Definition 1. Let G be a closed nonempty subset of a Banach spaaedF a bounded
subset ofX. Letgp € Pg(F). Thengo is called strongly unique of order > O if there
exists a constant, = ¢, r > 0 such that

supllx — g[|*> supllx — goll* + cxllg — goll* for eachg € G. (4.4)
xeF xeF

The following result, which is trivial in the case wheris totally bounded, will be useful.
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Lemma 1. Let F be a boundeftesp.totally boundedyubset of X ango € Pg(F). Then,
foranya™ € Mp_q, (resp.Er_q4,) andg € G,

supllx — gll2=rG(F)? + [(a*, go — &)I* + 2rg (F)Re(a*, go — g). (4.5)

xeF
Proof. Leta™ € Mp_g, (resp.Er_q,) andg € G. Then

Uf(a*) — Re{a*, go) = supllx — goll = rg(F).

xeF

By (2.5), there exist sequencgg’} < extB* and{x;} € F such that

lim Re{a;, xi — go) = supllx — goll = rg(F). (4.6)
k—o00 xeF
lim (a;, go— g) = (a*. go — g)- 4.7)
k— 00

Note that

(Re(a}’, xp — g0))? + (Im(a}', x; — go)? = {a}', xx — go)>-

Taking the limits in above equality and making use of (4.6), we get

lim Im(a;, x; — go) = 0. (4.8)
k—o00
Consequently, by (4.6)—(4.8),
Jim_Re{{ag, xk — go) - (a, 80— &)} = rc(F)Re&(a”, go — g). (4.9)
Hence,

2 2
SUPcer X — gll° = [{ag, xk — &)

= l{aj, xx — go)|> + l{a}', g0 — &)1
+2 Re{{a}, xk — go) - (a;, g0 — &)} (4.10)

Taking the limits in above inequality and making use4|, (4.7) and (4.9), we have (4.4)
and complete the proof.[]

Theorem 2. Let G be a strict RS-sétesp.an RS-set) and ldf ¢ X be a bounded subset
(resp.a totally bounded subse$ptisfyingrg (F) > rx(F). Suppose thafpr eachi € I;
and eachz* € bdJ;, bdJ; has a positive curvature at*. Then the restricted Chebyshev
center of F with respect to G is strongly unique of or@er

Proof. Due to the same reason, we will prove the theorem only for the case Wien
bounded. Under the assumption of the theorem, &adh strictly convex. By Theorem
4.1, the restricted Chebyshev centefFofiith respect tdG is unique. Lefgg be the unique
restricted Chebyshev center. From Theorem 2.1, it follows that there &ist- go) =
{af, a5, ....a;} © Mp_gy, B(go) = {ir,i2,...,im} € 1(g0),0i; € 0i;(80), J =
1,....,m (k>1, k+m<2dimY + 1) and positive scalarg,, /o, ..., 4 such that (2.21)
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holds. Without loss of generality, we may assume thatip, ..., A satisfny=l Ai =
rg(F). Set

SUPcr lIx — glI2 — rg (F)?
7(8) = >
llg — goll

for eachg € G \ {go}. (4.12)

It is sufficient to show thaf(g) has positive lower bounds o \ {go}. Suppose on the
contrary thatthere exists a sequefigg C G \{go} suchthay(g,) — 0. Thensup.y ||x—
gnll = sup.cr llx — goll. With no loss of generality, we may assume that-> go due to
the uniqueness of the restricted Chebyshev centerj Fol, 2, ..., m, letx;; > 0 andu;,
denote the curvature and the center of curvature, é4o), respectively. Define

Cij = 2u;; —ci;j(g0), ri; = 2Jui; — ci;(80)l = 2/ki;
foreachj = 1,2, ..., m. (4.12)

Then there exists a neighborhoUgl of ci; (go) such that
lz —¢i;|<r;; foreachz e J;; NU;; andeacly =1,2,...,m. (4.13)
Clearly, for eachi; € B(go) anda;; € 0i;(g0), 0i; = di; (¢i; — ci;(go)) for somed;; > 0.

Thus, by (2.21),

k m
> lilaF.go— gn) + > dijci; (80— gn)(@i; — ci;(80) =0
i=1 j=1
foreachmn =1,2,.... (4.14)

In addition, by (4.13), we also have that
|ci;(gn) — ¢i;|<ri; foreachij € B(go) (4.15)
holds for alln large enough sincej (gn) —> ci;(go) asn — oo. Now define

1/2
k m
lglz = | Y Ailta;, &) ?+ > dijlei; () for eachg € Y. (4.16)
i=1 j=1

By Lemma 2.3, it is easy to verify thdt- |2 is @ norm onY so that it is equivalent to the
original norm. Consequently, there exists a constant0 such that

llgll2=7lgll foreachg €Y. (4.17)

SinceX"*_; J; = r¢(F), by Lemma 4.1, for each,

supllx — gull> > ——
YeF "7 g (F)

k

+2) " ZiRe{af’, g0 — ga)- (4.18)
i=1

k k
Y 2irg(FY?+ Y JillaF, g0 — ga)l?
i=1

i=1
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Becausec;; — ci;(go)| = ri;, by (4.14) and (4.15), we get that, forarge enough,
k

2" LiRelaf, g0 — gn)

=1

k m
>2% " JiRe(af, go— gu) + Y _ dijléi; — ci (gn)” — Zdl}rlj
i=1 j=1 j=1

= d;;lei,(g0) — ci; (gn) . (4.19)
j=1

Hence, by (4.18), (4.19) and (4.17),

SURe llx — gall® > rG<F>2+WZﬂ»l|al go— gn)l?

m
+ > dijlei (g0) — ci;(gn)I?

j=1
> ro (P2 +min ] —— 1} g0 — gu12
= rG(F)’ nil2
. 1
> rG(F)% + min { , 1} g0 — gnll%. (4.20)
rG(F)

This means that(g,) > min {ﬁ 1} v2 for nlarge enough, which contradicts thdt,,)

— 0. The proof is complete. [J

In order to give some more general strong uniqueness theorems, recall that for each closed
convex subsef; of C with nonempty interior there exists a convex functifron C such
that

intJ; ={zeC: fi(z) <0} and bdJ;={ze€C: fi(z) =0}. (4.22)
Moreover, we require the notion of uniformly convex function and some useful properties,
see, for examplg22].
Definition 2. A function f : C — R is uniformly convex atz* € C if there exists
0: Ry — R4 with 6(r) > 0 fors > 0 such that

fOZF+A=D)<AfE) + A=) f(2) — AL~ Do(|z" —z])
foreach; e Candeach < 4 < 1. (4.22)

Define the modulus of convexity éfatz*
, {Af(z*)Jr(l ADf@—fUT+A=D2)
Uy« (1) =inf

C, Iz -z =
pra— eC, |28 =zl =1,

0</i< 1} ) (4.23)

Clearly,F is uniformly convex at* if and only if u_.(r) > 0 forz > 0.
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Definition 3. A function f : C — R has the modulus of convexity of order > 0 at
z* € Cif there existst, > 0 such thape« (1) > p,t? forz > 0.

Proposition 1. A functionf : C — R has the modulus of convexity of order> 0 at
z* € Cifand only if there existg,, > 0 such that

f@=2f@E) +Rez — 29U + p,lz — 27
for eachz € C and eachu € 07 (z"). (4.24)

Theorem 3. Let G be a strict RS-sétesp.an RS-setand letFF ¢ X be a bounded subset
(resp.a totally bounded subsesptisfyingrg (F) > rx(F). Suppose thafpr anyi € Iy,
there exists a convex functighsatisfying4.21)such thatf; (-) has the modulus of convexity
of orderp > O at eachz* € bdJ;. Then the restricted Chebyshev center of F with respect
to G is strongly unique of order = max{p, 2}.

Proof. The proofis similarto that of Theorem 4.2. We assumeghat Pg (F) isthe unique
restricted Chebyshez center since under the conditions of the theorend;gaatiearly
strictly convex. LetA(F —go) = {aj, a5, ...,a;} S Mr_g,, B(go) = {i1,i2,...,in} C
1(g0),0i; € 0i;(g0), j=1,....m and positive scalarg, 4o, ..., 4 be such that (2.21)

holds ande.‘:1 Ai = rg(F). As in the proof of Theorem 4.2, set

SUPer llx — glI* —rg(F)*
g — goll*

70(8) = for eachg € G \ {go} (4.25)

and suppose thdig,} C G \ {go} such thaty,(g,) — 0 andg, — go asn — oo.
Since, for eachi; € B(go), ci;(go) is not a minimizer off;; (hence O¢ ﬁf(ci_/. (20))), by
Clarke[3, Corollary 1, p. 56],NJ,.j (ci; (go)) is equal to the cone generated®y(c;; (g0))-
Consequently, for eadh € B(go) andaij € 0i;(go), we have thab,-j = —d;; o, for some
di; > 0andw;; € 0fi;(ci;(g0)). Thus, from (2.21), it follows that

k m
> ilaF.go— gy + > dijci,(ga — g0)%; =0 foreachn =1,2..... (4.26)
i=1 j=1

Noting thatc,-j (8n) € Jij, ci;(g0) € bd Ji; andB(go) is finite, we get that, by (4.24), there
existsy,, > 0 such that, for eacly € B(go),

Re((ci; (gn) — ci;(80)%;) + iplci; (g0) — ¢i;(gn)|” <O for eachn. (4.27)
Thus, by (4.18), (4.26) and (4.27), one has
1 k k
su x—gnll? > —— Jirg (F)? + Jiltal, go — gn)l?
Per % = 8nl* > ; G(F)?+ Y Jillar, go — gn)l

i=1

k
+2) " JiRela}, go — gn)
i=1



52 C. Li/ Journal of Approximation Theory 135 (2005) 35-53

+2 " di;Re((ci; (gn) — ci; (80))7%;)

j=1

+2u, Y di;|ci; (80) — ci; (gn)”

=1
1 k
_ 2 ] % _ 2
=70t Ty D il n = ol
+2u, Z di;lci; (g0) — cij(gn)]”. (4.28)

i=1

Now for anyg € Y, define
k m 1/
lglle = | D Ailtar, )" + Y _dilci; (@ | (4.29)
i=1 j=1
Then| - ||, is @ norm or¥ equivalent to the original norm so that
ligllz=7lgll foreachg e Y (4.30)

for some constant > 0. Becausd{ g, — goll — 0, by (4.28) and (4.30),

SURer lIx — gull® > r6(F) +WZ;” ay, gn — go)|”

+2u, Z di,Ici; (g0) — ci, (gn)|*
i=1

1
> rg(F)? + min { 2/11,} llgn — golly
rG(F)’

> rg(F)? 4+ min { , zup} 7*lgn — goll” (4.31)

1
rg(F)

holds for alln large enough. It follows from the Cauchy mean-valued theorem that

o
supllx — gull* — rg (F)*= EFG(F)“_Z (supnx 7 rG(F>2) : (4.32)

xeF xeF

Therefore, by (4.25), (4.31) and (4.32)

a— 1
va(gn>>2rG<F) 2mm{ p—at 2u,,}v >0,

which contradicts that,(g,) — 0. We complete the proof.[]
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