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LetG be a strictRS-set (resp. an RS-set) inX and letF be a bounded (resp.totally bounded) subset
of X satisfyingrG(F )> rX(F ), whererG(F ) is the restricted Chebyshev radius ofF with respect
to G. It is shown that the restricted Chebyshev center ofF with respect toG is strongly unique in
the case whenX is a real Banach space, and that, under some additional convexity assumptions, the
restricted Chebyshev center ofF with respect toG is strongly unique of order��2 in the case when
X is a complex Banach space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

LetX be a Banach space over the fieldF, whereF = R, the reals, orF = C, the complex
plane. LetG be a closed nonempty subset ofX. For a bounded subsetF of X, an element
g0 ∈ G is called a restricted Chebyshev center ofFwith respect toG (or a best simultaneous
approximation toF fromG) if it satisfies that

sup
x∈F

‖x − g0‖� sup
x∈F

‖x − g‖ for eachg ∈ G.
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The set of all restricted Chebyshev centers ofF with respect toG is denoted byPG(F), that
is,

PG(F) =
{
g0 ∈ G : sup

x∈F
‖x − g0‖ = rG(F )

}
,

whererG(F ) is the restricted Chebyshev radius ofF with respect toG defined by

rG(F ) = inf
g∈G sup

x∈F
‖x − g‖.

Motivated by the work of Rozema and Smith[16], Amir [1] introduced the concept of an
RS-set in a real Banach space and then gave the uniqueness results for the restricted Cheby-
shev center with respect to anRS-set. Recently, there are several papers concerned with the
uniqueness of the best approximation from anRS-set, see, e.g., [9,13,14]. Surprisingly, the
strong uniqueness of the restricted Chebyshev center with respect to anRS-set have not been
paid attention so far although it has been studied for the case whenG is an interpolating
subspace in [8,10] independently. The first part of the present paper is to generalize the
strong uniqueness results on the case whenG is an interpolating subspace to the case when
G is anRS-set. As will be seen in Section 3, this generalization is not trivial. In fact, for this
end, we need to establish a general strong uniqueness theorem for the restricted Chebyshev
center with respect to a polyhedron of finite dimension in a Banach space.

On the other hand, motivated by the work in real Banach spaces, one problem may
be of interest: can one develop a similar theory forRS-sets in complex Banach spaces?
This problem has never been considered before. It is not difficult to define anRS-set in a
complex Banach space similar to one in a real space. However, when we try to establish the
same strong uniqueness results for anRS-set in a complex Banach space, we find that it is
completely different from that in a real space. First, the restricted Chebyshev center with
restrict to anRS-set in a complex Banach space may not be unique in general; and secondly,
the restricted Chebyshev center is not strongly unique even in the case when it is unique. The
second part of the present paper is to establish some results on strong uniqueness of order
��2 for the restricted Chebyshev center with respect to anRS-set in a complex Banach
space.

We conclude the section by describing the organization of this paper. In the next section,
we use the notion of the strong CHIP, which is taken from optimization theory and plays
an important role there, to verify the characterization theorem of the restricted Chebyshev
center with respect to anRS-set and some basic facts, which are used in other sections. In
Section 3, we consider the strong uniqueness of the restricted Chebyshev center with respect
to anRS-set in a real Banach space. We first establish a general strong uniqueness theorem
for the restricted Chebyshev center with respect to a polyhedron of finite dimension and
then prove that, for any totally bounded subset (resp.bounded subset)F of Xwith rG(F ) >
rX(F ), the restricted Chebyshev centers ofF with respect toG is strongly unique provided
thatG is anRS-set (resp.a strictRS-set) in a real Banach space. Finally, in the last section, the
uniqueness and the generalized strong uniqueness of the restricted Chebyshev center with
respect to anRS-set in a complex Banach space are studied.We first give an counter-example
to illustrate that, for a totally bounded subsetF satisfyingrG(F ) > rX(F ), the restricted
Chebyshev center with respect to anRS-set is not unique in a complex Banach space. Then,
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under some additional convexity assumptions, we show that, for any totally bounded subset
(resp.bounded subset)F of Xwith rG(F ) > rX(F ), the restricted Chebyshev centers ofF
with respect toG is strongly unique of order��2 if G is anRS-set (resp.a strictRS-set) in
a complex Banach space.

2. Preliminaries and characterizations

We begin with some basic notations, most of which is standard (cf.[3]). In particular, for
a setA in a Banach space, the interior (resp. closure, convex hull, convex cone hull, linear
hull, boundary) ofA is defined by intA (resp.A, convA, coneA, spanA, bdA). Also we
adopt the convention that Re� = � in the case when� is a real number.

LetYbe a subspace ofX. For a nonempty convex closed subsetC ofY, the normal cone
NC(x) of C atx is defined by

NC(x) = {z∗ ∈ Y ∗ : Re〈z∗, y − x〉�0 for all y ∈ C}. (2.1)

Let x ∈ ⋂m
i=1Ci . Thus, following[5,11], a collection{C1, C2, . . . , Cm} of convex closed

sets inY is called to have the strong conical hull intersection property (CHIP) atx if and
only if

N⋂m
i=1Ci

(x) =
m∑
i=1

NCi (x). (2.2)

Let f be a proper convex continuous function defined onY. Then, as in[11], the subdiffer-
entiable off atx is denoted by�f (x) and defined by

�f (x) := {z∗ ∈ Y ∗ : f (x)+ Re〈z∗, y − x〉�f (y) for all y ∈ Y }. (2.3)

LetB∗ denote the closed unit ball of the dualX∗ and extB∗ the set of all extreme points
from B∗. Let B∗ be endowed with the weak∗-topology. ThenB∗ is a compact Hausdorff
space. We useextB∗ to denote the weak∗-closure of the set extB∗. For a bounded subsetF
of X, define

UF (x
∗) = sup

x∈F
Re〈x, x∗〉 for eachx∗ ∈ B∗ (2.4)

and

U+
F (x

∗) = inf
O∈N(x∗)

sup
u∗∈O

UF (u
∗) for eachx∗ ∈ B∗, (2.5)

whereN(x∗) denotes the set of all open neighborhoods aroundx∗ in B∗. From[7], see also
[19,20], we have the following proposition:

Proposition 1. Let F be a bounded subset of X and letU+
F be defined by(2.5).Then

(i) U+
F is upper semi-continuous onB∗ and

sup
x∗∈B∗

{
U+
F (x

∗)− Re〈x∗, g〉} = sup
x∈F

‖x − g‖ for eachg ∈ X; (2.6)

(ii) if F is totally bounded,UF is continuous andU+
F = UF onB∗.
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Lemma 1. Letg ∈ X. Then

sup
x∗∈extB∗

{
U+
F (x

∗)− Re〈x∗, g〉} = sup
x∈F

‖x − g‖. (2.7)

Proof. By the well-known Krein–Milman theorem, we have that

supx∈F ‖x − g‖ = sup
x∗∈B∗

{
UF (x

∗)− Re〈x∗, g〉}
= sup

x∗∈extB∗

{
UF (x

∗)− Re〈x∗, g〉}
� sup

x∗∈extB∗

{
U+
F (x

∗)− Re〈x∗, g〉}
� sup

x∗∈B∗

{
U+
F (x

∗)− Re〈x∗, g〉}
= sup

x∈F
‖x − g‖.

This completes the proof.�

Let g ∈ X and letF be a bounded subset ofX. Define

MF−g =
{
x∗ ∈ extB∗ : U+

F (x
∗)− Re〈x∗, g〉 = sup

x∈F
‖x − g‖

}
; (2.8)

EF−g =
{
x∗ ∈ extB∗ : UF (x∗)− Re〈x∗, g〉 = sup

x∈F
‖x − g‖

}
. (2.9)

Note that, by Lemma 2.1,MF−g is a nonempty weak∗ compact set. Furthermore, ifF is
totally bounded, so isEF−g.

Let fF denote the convex function onYdefined by

fF (g) = sup
x∗∈extB∗

{
U+
F (x

∗)− Re〈x∗, g〉} , g ∈ Y. (2.10)

For a subsetM of X∗, let

M|Y = {z∗|Y ∈ Y ∗ : z∗ ∈ M}, (2.11)

wherez∗|Y denotes the restriction of the functionalz∗ onY. Then the subdifferential of the
functionfF is given by the following lemma:

Lemma 2. Suppose that Y is a finite-dimensional subspace of X.Then

�fF (g) = −coMF−g|Y . (2.12)

In addition,if F is totally bounded,

�fF (g) = −coEF−g|Y . (2.13)
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Proof. Let x∗ ∈ extB∗ and define

fF,x∗(g) = U+
F (x

∗)− Re〈x∗, g〉 for each g ∈ Y. (2.14)

By the definition, it is easy to show that the subdifferential offF,x∗ atg ∈ Y
�fF,x∗(g) = −x∗|Y . (2.15)

It follows from [12, Theorem 3.1] that

�fF (g) = co

{
�fF,x∗(g) : fF,x∗(g) = sup

z∗∈extB∗
fF,z∗(g)

}
. (2.16)

Clearly,MF−g = {x∗ ∈ extB∗ : fF,x∗(g) = supz∗∈extB∗ fF,z∗(g)}. Hence (2.12) follows
from (2.15) and (2.16).

Now assume thatF is totally bounded. Then, by Proposition 2.1(ii), for eachx∗ ∈ MF−g,
we have that

UF (x
∗)− Re〈x∗, g〉 = sup

x∈F
‖x − g‖. (2.17)

Takex̄ ∈ F such that Re〈x∗, x̄〉−Re〈x∗, g〉 = supx∈F ‖x−g‖. By Singer[17, Lemma 1.3,
p. 169], there existx∗

1, . . . , x
∗
k ∈ extB∗ (1�k�2 dimY ) and positive numbers�1, . . . , �k

with
∑k
i=1 �i = 1 such that

〈x∗, x̄〉 =
k∑
i=1

�i〈x∗
i , x̄〉 and x∗|Y =

k∑
i=1

�ix∗
i |Y . (2.18)

This with (2.17) implies thatx∗
i ∈ EF−g for anyi = 1,2, . . . , k; hencex∗|Y ∈ coEF−g|Y

and (2.13) is proved. �

Let {y1, y2, . . . , yn} ben linearly independent elements ofX. Define

G =
{
g =

n∑
i=1

ciyi : ci ∈ Ji
}
, (2.19)

where eachJi is a subset of the fieldF of one of the following types:

(I) the whole ofF;
(II) a nontrivial proper convex closed (bounded or unbounded) subset ofF with nonempty

interior;
(III) a singleton ofF.

Let Z denote the subspace spanned by{y1, y2, . . . , yn}. For eachi, define the linear
functionalci onZ by

ci(g) = ci for each g =
n∑
i=1

ciyi . (2.20)
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Let I = {1,2, . . . , n} and letI0 andI1 denote the index sets of alli such thatJi is of the
type (III) and (II), respectively. Set

I (g) = {i ∈ I1 : ci(g) ∈ bdJi},
�i (g) = −NJi (ci(g)) \ {0} for eachi ∈ I1

and

Y = {g ∈ Z : ci(g) = 0 ∀i ∈ I0} .
The following theorem gives the characterization of a restricted Chebyshev center with

respect to the setG given by (2.19).

Theorem 1. Suppose that G is defined by(2.19)and F ⊂ X is a bounded subset. Let
g0 ∈ G. Theng0 ∈ PG(F) if and only if there existA(F − g0) = {a∗

1, a
∗
2, . . . , a

∗
k } ⊆

MF−g0, B(g0) = {i1, i2, . . . , im} ⊆ I (g0),�ij ∈ �ij (g0), j = 1, . . . , m (with 1 +
m�k +m�dimY + 1 if F = R and1 +m�k +m�2 dimY + 1 if F = C) and positive
scalars�1, �2, . . . , �k such that

k∑
i=1

�i〈a∗
i , g〉 +

m∑
j=1

cij (g)�ij = 0 for each g ∈ Y. (2.21)

In addition,if F is totally bounded,MF−g0 can be replaced withEF−g0.

Proof. We will prove the theorem only for the case whenF is bounded since the case when
F is totally bounded is similar.

For eachi ∈ I1, define,

Ci = {g ∈ Y : ci(g)+ ci(g0) ∈ Ji}.
It is clear thatg ∈ G if and only if g − g0 ∈ C ∩ Y whereC := ⋂

i∈I1 Ci . Note that

sup
x∈F

‖x − g‖ = sup
x∈F

‖x − g0 − (g − g0)‖ = sup
x∈F−g0

‖x − (g − g0)‖.

We get thatg0 ∈ PG(F) if and only if 0 ∈ PC∩Y (F − g0). We now consider the problem
in the finite-dimensional spaceY. Thus, by Lemma 2.1,g0 ∈ PG(F) if and only if 0 is an
optimal solution of the minimization problem onYgiven by

minfF−g0(g) (2.22)

subject tog ∈ C. Since there exists an elementĝ ∈ G satisfyingci(ĝ) ∈ int Ji for each
i ∈ I1, int

⋂
i∈I1 Ci �= ∅; hence, by Deutsch et al.[6, Proposition 3.1], the collection of

convex sets{Ci : i ∈ I1} has the strong CHIP. From [4], the following assertions are
equivalent:

(i) 0 is an optimal solution of the minimization problem (2.22) subject tog ∈ C;
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(ii) there existy∗ ∈ �fF−g0(0), x
∗
i ∈ NCi (0) (i ∈ I1) such that

y∗ +
∑
i∈I1

x∗
i = 0 onY. (2.23)

Note that

NCi (0) = {x∗ ∈ Y ∗ : �i ∈ NJi (ci(g0)), �j = 0 ∀j ∈ I \ I0, j �= i}, (2.24)

where�j := 〈x∗, yj 〉 for j ∈ I . Clearly i /∈ I (g0) if and only if ci(g0) ∈ int Ji . Hence,
NJi (ci(g0)) = 0 andNCi (0) = 0 in the case wheni /∈ I (g0). By (2.24), in the case when
i ∈ I (g0), x∗

i ∈ NCi (0) if and only if there exists�i ∈ NJi (ci(g0)) such that

〈x∗
i , g〉 = ci(g)�i for eachg ∈ Y. (2.25)

Moreover, by Lemma 2.2,y∗ can be expressed as

− y∗ =
k∑
i=1

�ia
∗
i onY (2.26)

for somea∗
i ∈ MF−g0, (i = 1,2, . . . , k) and�i > 0 with

∑k
i=1 �i = 1. Hence, by (2.25)

and (2.26), (ii) holds if and only if there exista∗
i ∈ MF−g0, �i > 0 (i = 1,2, . . . , k, k > 0)

and�ij ∈ �i (g0) (ij ∈ I (g0), j = 1,2, . . . , m) such that

k∑
i=1

�i〈a∗
i , g〉 +

m∑
j=1

cij (g)�ij = 0 for eachg ∈ Y. (2.27)

Moreover, when (2.27) hold, we can have the additional property:

1 +m�k +m�
{

dimY + 1 if F = R,

2 dimY + 1 if F = C.
(2.28)

In fact, assume that dimY = l and, without loss of generality, let{y1, . . . , yl} be a basis of
Y. LetV andU denote the convex hull of the sets{(〈a∗

i , y1〉, 〈a∗
i , y2〉, . . . , 〈a∗

i , yl〉) : i =
1,2, . . . , k} and{(cij (y1), cij (y2), . . . , cij (yl))�ij : j = 1,2, . . . , m}, respectively. Since
there exists an elementĝ ∈ Gsatisfyingci(ĝ) ∈ int Ji for eachi ∈ I1, we have that 0/∈ coU .
Hence, (2.27) holds if and only if 0∈ co(V ∪ U). Thus, by the Caratheodory Theorem (cf.
[2]), we can select subsets of{a∗

1 : i = 1,2, . . . , k} and{�ij : j = 1,2, . . . , m}, denoted
by themselves, such that (2.27) and (2.28) are satisfied. As we already noted,g0 ∈ PG(F)
if and only if (i) holds. Therefore, the proof is complete.�

Now let us introduce the concept ofRS-sets in Banach spaces over the fieldF.

Definition 1. An n-dimensional subspaceZ of a Banach spaceX over the fieldF is called
an interpolating subspace (resp. a strictly interpolating subspace) if no nontrivial linear
combination ofn linearly independent points from the set extB∗ (resp.extB∗) annihilates
G.
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Remark 1. Note that Ann-dimensional subspaceZ of a Banach spaceX over the fieldF

is an interpolating subspace (resp. a strictly interpolating subspace) if and only if for anyn
linearly independent pointsx∗

i , . . . , x
∗
n from the set extB∗ (resp.extB∗) and anyn scalars

c1, . . . , cn ∈ F there exists uniquely an elementg ∈ Z such that

〈x∗
i , g〉 = ci for eachi = 1,2 = · · · , n.

Definition 2. LetXbe a Banach space over the fieldF and let{y1, y2, . . . , yn} ben linearly
independent elements ofX. We call the setG defined by (2.19) anRS-set (resp. a strict
RS-set) if every subset of{y1, y2, . . . , yn} consisting of allyi with Ji of type (I) and someyi
with Ji of type (II) spans an interpolating subspace (resp. a strictly interpolating subspace).

Remark 2. In the case ofF = R, the definition of anRS-set was introduced by Amir
[1]. However, in the case ofF = C, it seems the first time that the notion of anRS-set is
introduced.

Finally we still need the following lemma, which plays an important role in the coming
two sections.

Lemma 3. Suppose G is a strict RS-set(resp.an RS-set)in X over fieldF. LetF ⊂ X be a
boundedsubset(resp.a totally boundedsubset)satisfyingrG(F ) > rX(F )andg0 ∈ PG(F).
LetA(F −g0) = {a∗

1, . . . , a
∗
k } ⊆ MF−g0 (resp.EF−g0) andB(g0) = {i1, . . . , im} ⊆ I (g0)

with positive numbers�1, . . . , �l satisfy(2.21).Then there are at leastdimY −m linearly
independent elements inA(F − g0).

Proof. As before, we prove the lemma only for the case whenF is bounded. Set

Q = {g ∈ Y : cij (g) = 0, j = 1, . . . , m}. (2.29)

ThenQ is an strictly interpolating subspace of dimensionN = dimY − m. With no loss
of generality, we may assume thata∗

1, . . . , a
∗
k′ are linearly independent and (2.21) can be

rewritten into

k′∑
i=1

�′
i〈a∗

i , g〉 +
m∑
j=1

�ij (g0)cij (g) = 0 for each g ∈ Y. (2.30)

To complete the proof, it suffices to show thatk′ �N . Suppose on the contrary thatk′ < N .
SinceQ is a strictly interpolating subspace of dimensionN = dimY −m, by Remark 2.1,
there exists an elementq0 ∈ Q \ {0} such that

〈a∗
i , q0〉 = �′

i , i = 1, . . . , k′,
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which with (2.30) implies
∑k′
i=1 |�′

i |2 = 0 and so�′
i = 0 for eachi = 1,2, . . . , k′.

Consequently,

k∑
i=1

�i〈a∗
i , g〉 =

k′∑
i=1

�′
i〈a∗

i , g〉 = 0 for all g ∈ X.

This implies thatg0 ∈ PX(F ), which contradicts thatrG(F ) > rX(F ). The proof is
complete. �

3. Strong uniqueness in real Banach spaces

In this section we always assume thatF = R, i.e.,X is a real Banach spaceX. We begin
with a general theorem on the strong uniqueness of the restricted Chebyshev center with
respect to a finite-dimensional polyhedron.

Definition 4. A closed convex subsetG of X is called a polyhedron if it is the intersection
of a finite number of closed half-spaces, that is,

G =
k⋂
i=1

{x ∈ X : 〈x∗
i , x〉�di}

for somex∗
i ∈ X∗ \ {0} and real scalarsdi . A closed convex subsetG of X is called

a polyhedron of finite dimension if it is the intersection of a polyhedron and a finite-
dimensional subspace ofX.

Theorem 1. Let G be a polyhedron of finite dimension of X.LetF ⊂ X be bounded and
g0 ∈ PG(F). Suppose that the strict Kolmogorov condition

max
a∗∈MF−g0

〈a∗, g0 − g〉 > 0 for eachg ∈ G \ {g0} (3.1)

holds. Theng0 is strongly unique,that is,there exists a constantr = r(F ) > 0 such that

sup
x∈F

‖x − g‖� sup
x∈F

‖x − g0‖ + r‖g − g0‖ for eachg ∈ G. (3.2)

Proof. Assume that

G =
k⋂
i=1

{x ∈ X : 〈x∗
i , x〉�di}

for somex∗
i ∈ X∗ \ {0} and real scalarsdi . For convenience, we writeI = {1,2, . . . , k},

I0 = {i ∈ I : 〈x∗
i , g〉 = di for all g ∈ G} (3.3)

and

Hi = {g ∈ G : 〈x∗
i , g〉 = di} for eachi ∈ I. (3.4)
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Forg ∈ G, set

J (g) = {i ∈ I : g ∈ Hi} (3.5)

and, ifJ (g0) �= I ,

G0 =
⋃

i /∈J (g0)

Hi.

Note that, in the case whenJ (g0) �= I ,G0 is a nonempty closed subset ofG andg0 /∈ G0;
hencet∗ = d(g0,G0) > 0. For eachg ∈ G \ {g0} and each� > 0, define

T�(g) =
(

1 − �
‖g0 − g‖

)
g0 + �

‖g0 − g‖g.

Set

�∗ =
{
t∗ if J (g0) �= I,

1 if J (g0) = I.

First, we will show that

T�∗(g) ∈ G for eachg ∈ G. (3.6)

Indeed, it is trivial in the case whenJ (g0) = I . Therefore, we may assume thatJ (g0) �= I .
Let I+ = {i ∈ I : 〈x∗

i , Tt∗(g)〉 > di}. Suppose on the contrary thatTt∗(g) /∈ G. Since
〈x∗
i , Tt∗(g)〉�di for eachi ∈ J (g0), we have that

I+ �= ∅ and I+ ⋂
J (g0) = ∅. (3.7)

For eachi ∈ I+, let 0< �i < t∗ satisfy〈x∗
i , T�i (g)〉 = di and let� = mini∈I+ �i . Then,

for eachi ∈ I+,

〈x∗
i , T�i (g)〉�di. (3.8)

Clearly, (3.8) holds for eachi ∈ I \ I+ since 0< � < t∗. HenceT�(g) ∈ G. Moreover,
by the definition of�, we have thatJ (T�(g)) ∩ I+ �= ∅. Takei0 ∈ J (T�(g)) ∩ I+. Then
T�(g) ∈ Hi0. By (3.7),i0 /∈ J (g0). HenceT�(g) ∈ G0. This implies that

t∗ = d(g0,G0)�‖g0 − T�(g)‖ = � < t∗,

which is a contradiction, This proves thatTt∗(g) ∈ G.
Secondly, we will show that

� = inf
g∈G\{g0}

max
a∗∈MF−g0

�∗〈a∗, g0 − g〉
‖g0 − g‖ > 0. (3.9)

For this purpose, let

�(g) = max
a∗∈MF−g0

�∗〈a∗, g0 − g〉
‖g0 − g‖ (3.10)
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and suppose on the contrary that there exists a sequence{gn} ⊂ G\ {g0} such that�(gn) →
0 asn → ∞. Due to the compactness, we may assume that�∗(g0−gn)

‖g0−gn‖ → g̃ �= 0. Since

g0 − �∗(g0−gn)
‖g0−gn‖ = T�∗(gn), by (3.6),g0 − �∗(g0−gn)

‖g0−gn‖ ∈ G. Consequently,g0 − g̃ ∈ G \ {g0}.
However,

max
a∗∈MF−g0

〈a∗, g0 − (g0 − g̃)〉 = lim
n→∞ �(gn) = 0, (3.11)

which contradicts to (3.1). Hence (3.9) holds.
Finally, from (3.9) we have that

max
a∗∈MF−g0

〈a∗, g0 − g〉� �‖g0 − g‖
�∗ for eachg ∈ G. (3.12)

Let a∗
0 ∈ MF−g0 be such that

〈a∗
0, g0 − g〉 = max

a∗∈MF−g0
〈a∗, g0 − g〉. (3.13)

Thus, by Lemma 2.1, (3.12) and (3.13), we have that

supx∈F ‖x − g‖ � U+
F (a

∗
0)− 〈a∗

0, g〉= U+
F (a

∗
0)− 〈a∗

0, g0〉 + 〈a∗
0, g0 − g〉

� supx∈F ‖x − g0‖ + �
�∗ ‖g0 − g‖

for all g ∈ G, that is,g0 is strongly unique. The proof of the theorem is complete.�

Now we are ready to give the main theorem of this section.

Theorem 2. Suppose that G is a real strict RS-set(resp.a real RS-set)and thatF ⊂ X

is a bounded subset(resp.a totally bounded subset)satisfyingrG(F ) > rX(F ). Then the
restricted Chebyshev center of F with respect to G is strongly unique.

Proof. We prove the theorem just for the case whenF is bounded. Letg0 ∈ PG(F). By
Theorem 3.1, we only need to show that the strict Komogorov condition (3.1) holds. Suppose
on the contrary that there existsg1 ∈ G \ {g0} such that

max
a∗∈MF−g0

〈a∗, g0 − g1〉�0. (3.14)

Then from Theorem 2.1, there existA(F − g0) = {a∗
1, a

∗
2, . . . , a

∗
k } ⊆ MF−g0, B(g0) =

{i1, i2, . . . , im} ⊆ I (g0),�ij ∈ �ij (g0), j = 1, . . . , m and positive scalars�1, �2, . . . , �k
such that

k∑
i=1

�i〈a∗
i , g1 − g0〉 +

m∑
j=1

cij (g1 − g0)�ij = 0. (3.15)
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By the definition of�ij (g0), �ij �= 0 and�ij cij (g0 −g1)�0, j = 1, . . . , m. It follows that

0�
k∑
i=1

�i〈a∗
i , g0 − g1〉 = −

m∑
j=1

�ij cij (g0 − g1)�0.

This implies that

〈a∗
i , g0 − g1〉 = 0, i = 1, . . . , k; (3.16)

cij (g0 − g1) = 0, j = 1, . . . , m. (3.17)

Hence,g0 − g1 ∈ Q, whereQ is defined by (2.29). SinceG is a strictRS-set, by Lemma
2.3,A(F − g0) contains at least dimY − m linearly independent elements. Moreover,Q
is a strictly interpolating subspace of dimension dimY − m. Thereforeg0 = g1, which
contradicts thatg1 ∈ G \ {g0}. The proof is complete. �

Remark 1. In the case whenG is a strictly interpolating subspace (resp.an interpolating
subspace) ofX. Theorem 3.2 was proved independently in[8,10].

4. Generalized strong uniqueness in complex Banach spaces

In this section we always assume thatF = C, i.e.,X is a complex Banach space. We begin
with a counter-example which illustrates that the restricted Chebyshev center with respect
to anRS-set is, in general, not unique in a complex Banach space.

Example 2. LetQ = {−1,0, 1} andX = C(Q), the complex continuous function space
defined onQwith the uniform norm. Define

g1(t) = 1, g2 = t − 1

2
∀t ∈ Q,

J1 = {z ∈ C : Rez�1}, J2 = {z ∈ C : Rez�1}
and

f (t) =



−1
2 t = −1,

0 t = 0,
3
2 t = 1.

Then,G = {g = c1 + c2
(
t − 1

2

) : Rec1�1, Rec2�1}. Take

g∗
1 = 1 +

(
t − 1

2

)
, g∗

2 = 1 + i

8
+

(
1 + i

4

) (
t − 1

2

)
.

Obviously,‖f − g∗
1‖ = |(f − g∗

1)(0)| = 1
2. Since, for anyg = c1 + c2

(
t − 1

2

) ∈ G,

‖f − g‖� |(f − g)(0)| =
∣∣∣∣c1 − 1

2
c2

∣∣∣∣ � 1

2
,
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we have thatg∗
1 ∈ PG(f ). On the other hand, it is easy to check that

‖f − g∗
2‖� |(f − g∗

2)(0)| = 1

2

so thatg∗
2 ∈ PG(f ).

However, the following theorem shows that, under some additional convexity condition
on Ji , the restricted Chebyshev center with respect to anRS-set is unique. Recall that
a convex subsetJ of C is strictly convex if, for any two distinct elementsz1, z2 ∈ J ,
1
2(z1 + z2) ∈ int J .

Theorem 1. Suppose that G is a strict RS-set(resp.an RS-set)and thatF ⊂ X is
a bounded subset(resp.a totally bounded subset)satisfyingrG(F ) > rX(F ). If each
Ji (i ∈ I1) is strictly convex,then the restricted Chebyshev center of F with respect to G is
unique.

Proof. Suppose thatPG(F) has two distinct elementsg1, g2. Write g0 = (g1 + g2)/2.
Then, using standard techniques, we have that

MF−g0 ⊆ MF−g1 ∩MF−g2 ⊆ {a∗ ∈ extB∗ : 〈a∗, g1 − g2〉 = 0} (4.1)

and, by the strict convexity of eachJi (i ∈ I1),
I (g0) ⊆ I (g1) ∩ I (g2) ⊆ {i : ci(g1 − g2) = 0}. (4.2)

Let

Q0 = {g ∈ P : ci(g) = 0, i ∈ I (g0)}. (4.3)

In view of the definition of a strictRS-set,Q0 is a strictly interpolating subspace of dimension
dimY − |I (g0)|, where|I (g0)| denotes the cardinality of the setI (g0). Clearly,g1 − g2 ∈
Q0. It follows from Lemma 2.3 thatMF−g0 contains at least dimY − |I (g0)| linearly
independent elements. Henceg1 − g2 = 0 and the proof is complete.�

Now let us consider the problem of the strong uniqueness of the restricted Chebyshev
center with respect toG. We first introduce the following definition of strong uniqueness of
order�, see, for example,[15,18,21].

Definition 1. Let G be a closed nonempty subset of a Banach spaceX andF a bounded
subset ofX. Let g0 ∈ PG(F). Theng0 is called strongly unique of order� > 0 if there
exists a constantc� = c�,F > 0 such that

sup
x∈F

‖x − g‖�� sup
x∈F

‖x − g0‖� + c�‖g − g0‖� for eachg ∈ G. (4.4)

The following result, which is trivial in the case whenF is totally bounded, will be useful.
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Lemma 1. Let F be a bounded(resp.totally bounded)subset of X andg0 ∈ PG(F). Then,
for anya∗ ∈ MF−g0 (resp.EF−g0) andg ∈ G,

sup
x∈F

‖x − g‖2�rG(F )2 + |〈a∗, g0 − g〉|2 + 2rG(F )Re〈a∗, g0 − g〉. (4.5)

Proof. Let a∗ ∈ MF−g0 (resp.EF−g0) andg ∈ G. Then

U+
F (a

∗)− Re〈a∗, g0〉 = sup
x∈F

‖x − g0‖ = rG(F ).

By (2.5), there exist sequences{a∗
k } ⊆ extB∗ and{xk} ⊆ F such that

lim
k→∞ Re〈a∗

k , xk − g0〉 = sup
x∈F

‖x − g0‖ = rG(F ). (4.6)

lim
k→∞〈a∗

k , g0 − g〉 = 〈a∗, g0 − g〉. (4.7)

Note that

(Re〈a∗
k , xk − g0〉)2 + (Im〈a∗

k , xk − g0〉)2 = |〈a∗
k , xk − g0〉|2.

Taking the limits in above equality and making use of (4.6), we get

lim
k→∞ Im〈a∗

k , xk − g0〉 = 0. (4.8)

Consequently, by (4.6)–(4.8),

lim
k→∞ Re{〈a∗

k , xk − g0〉 · 〈a∗
k , g0 − g〉} = rG(F )Re〈a∗, g0 − g〉. (4.9)

Hence,

supx∈F ‖x − g‖2 � |〈a∗
k , xk − g〉|2

= |〈a∗
k , xk − g0〉|2 + |〈a∗

k , g0 − g〉|2
+2 Re{〈a∗

k , xk − g0〉 · 〈a∗
k , g0 − g〉}. (4.10)

Taking the limits in above inequality and making use of (4.6), (4.7) and (4.9), we have (4.4)
and complete the proof.�

Theorem 2. Let G be a strict RS-set(resp.an RS-set) and letF ⊂ X be a bounded subset
(resp.a totally bounded subset)satisfyingrG(F ) > rX(F ). Suppose that,for eachi ∈ I1
and eachz∗ ∈ bdJi , bdJi has a positive curvature atz∗. Then the restricted Chebyshev
center of F with respect to G is strongly unique of order2.

Proof. Due to the same reason, we will prove the theorem only for the case whenF is
bounded. Under the assumption of the theorem, eachJi is strictly convex. By Theorem
4.1, the restricted Chebyshev center ofF with respect toG is unique. Letg0 be the unique
restricted Chebyshev center. From Theorem 2.1, it follows that there existA(F − g0) =
{a∗

1, a
∗
2, . . . , a

∗
k } ⊆ MF−g0, B(g0) = {i1, i2, . . . , im} ⊆ I (g0),�ij ∈ �ij (g0), j =

1, . . . , m (k�1, k+m�2dimY + 1) and positive scalars�1, �2, . . . , �k such that (2.21)
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holds. Without loss of generality, we may assume that�1, �2, . . . , �k satisfy
∑k
i=1 �i =

rG(F ). Set

�(g) = supx∈F ‖x − g‖2 − rG(F )
2

‖g − g0‖2 for eachg ∈ G \ {g0}. (4.11)

It is sufficient to show that�(g) has positive lower bounds onG \ {g0}. Suppose on the
contrary that there exists a sequence{gn} ⊂ G\{g0} such that�(gn) → 0. Then supx∈F ‖x−
gn‖ → supx∈F ‖x − g0‖. With no loss of generality, we may assume thatgn → g0 due to
the uniqueness of the restricted Chebyshev center. Forj = 1,2, . . . , m, let�ij > 0 anduij
denote the curvature and the center of curvature atcij (g0), respectively. Define

ĉij = 2uij − cij (g0), rij = 2|uij − cij (g0)| = 2/�ij
for eachj = 1,2, . . . , m. (4.12)

Then there exists a neighborhoodUij of cij (g0) such that

|z− ĉij |�rij for eachz ∈ Jij ∩ Uij and eachj = 1,2, . . . , m. (4.13)

Clearly, for eachij ∈ B(g0) and�ij ∈ �ij (g0), �ij = dij (ĉij − cij (g0)) for somedij > 0.
Thus, by (2.21),

k∑
i=1

�i〈a∗
i , g0 − gn〉 +

m∑
j=1

dij cij (g0 − gn)(ĉij − cij (g0)) = 0

for eachn = 1,2, . . . . (4.14)

In addition, by (4.13), we also have that

|cij (gn)− ĉij |�rij for eachij ∈ B(g0) (4.15)

holds for alln large enough sincecij (gn) → cij (g0) asn → ∞. Now define

‖g‖2 =

 k∑
i=1

�i |〈a∗
i , g〉|2 +

m∑
j=1

dij |cij (g)|2



1/2

for eachg ∈ Y. (4.16)

By Lemma 2.3, it is easy to verify that‖ · ‖2 is a norm onY so that it is equivalent to the
original norm. Consequently, there exists a constant� > 0 such that

‖g‖2��‖g‖ for eachg ∈ Y. (4.17)

Since
∑k
i=1 �i = rG(F ), by Lemma 4.1, for eachn,

sup
x∈F

‖x − gn‖2 � 1

rG(F )

{
k∑
i=1

�i rG(F )2 +
k∑
i=1

�i |〈a∗
i , g0 − gn〉|2

}

+2
k∑
i=1

�iRe〈a∗
i , g0 − gn〉. (4.18)
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Because|ĉij − cij (g0)| = rij , by (4.14) and (4.15), we get that, forn large enough,

2
k∑
l=1

�iRe〈a∗
i , g0 − gn〉

�2
k∑
i=1

�iRe〈a∗
i , g0 − gn〉 +

m∑
j=1

dij |ĉij − cij (gn)|2 −
m∑
j=1

dij r
2
ij

=
m∑
j=1

dij |cij (g0)− cij (gn)|2. (4.19)

Hence, by (4.18), (4.19) and (4.17),

supx∈F ‖x − gn‖2 � rG(F )
2 + 1

rG(F )

k∑
l=1

�l |〈a∗
l , g0 − gn〉|2

+
m∑
j=1

dij |cij (g0)− cij (gn)|2

� rG(F )
2 + min

{
1

rG(F )
, 1

}
‖g0 − gn‖2

2

� rG(F )
2 + min

{
1

rG(F )
, 1

}
�2‖g0 − gn‖2. (4.20)

This means that�(gn)� min
{

1
rG(F )

, 1
}

�2 for n large enough, which contradicts that�(gn)

→ 0. The proof is complete. �

In order to give some more general strong uniqueness theorems, recall that for each closed
convex subsetJi of C with nonempty interior there exists a convex functionfi on C such
that

int Ji = {z ∈ C : fi(z) < 0} and bdJi = {z ∈ C : fi(z) = 0}. (4.21)

Moreover, we require the notion of uniformly convex function and some useful properties,
see, for example,[22].

Definition 2. A function f : C → R is uniformly convex atz∗ ∈ C if there exists
� : R+ → R+ with �(t) > 0 for t > 0 such that

f (�z∗ + (1 − �)z)��f (z∗)+ (1 − �)f (z)− �(1 − �)�(|z∗ − z|)
for eachz ∈ C and each 0< � < 1. (4.22)

Define the modulus of convexity off at z∗

�z∗(t)= inf

{
�f (z∗)+ (1−�)f (z)−f (�z∗ + (1−�)z)

�(1−�)
: z ∈ C, |z∗ − z| = t,

0< � < 1

}
. (4.23)

Clearly,F is uniformly convex atz∗ if and only if �z∗(t) > 0 for t > 0.
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Definition 3. A function f : C → R has the modulus of convexity of orderp > 0 at
z∗ ∈ C if there exists�p > 0 such that�z∗(t) > �pt

p for t > 0.

Proposition 1. A functionf : C → R has the modulus of convexity of orderp > 0 at
z∗ ∈ C if and only if there exists�p > 0 such that

f (z)�f (z∗)+ Re(z− z∗)u+ �p|z− z∗|p
for eachz ∈ C and eachu ∈ �f (z∗). (4.24)

Theorem 3. Let G be a strict RS-set(resp.an RS-set)and letF ⊂ X be a bounded subset
(resp.a totally bounded subset)satisfyingrG(F ) > rX(F ). Suppose that,for any i ∈ I1,
there exists a convex functionfi satisfying(4.21)such thatfi(·)has themodulus of convexity
of orderp > 0 at eachz∗ ∈ bdJi . Then the restricted Chebyshev center of F with respect
to G is strongly unique of order� = max{p, 2}.

Proof. The proof is similar to that ofTheorem 4.2.We assume thatg0 ∈ PG(F) is the unique
restricted Chebyshez center since under the conditions of the theorem eachJi is clearly
strictly convex. LetA(F −g0) = {a∗

1, a
∗
2, . . . , a

∗
k } ⊆ MF−g0, B(g0) = {i1, i2, . . . , im} ⊆

I (g0),�ij ∈ �ij (g0), j = 1, . . . , mand positive scalars�1, �2, . . . , �k be such that (2.21)

holds and
∑k
i=1 �i = rG(F ). As in the proof of Theorem 4.2, set

��(g) = supx∈F ‖x − g‖� − rG(F )
�

‖g − g0‖� for eachg ∈ G \ {g0} (4.25)

and suppose that{gn} ⊂ G \ {g0} such that��(gn) → 0 andgn → g0 asn → ∞.
Since, for eachij ∈ B(g0), cij (g0) is not a minimizer offij (hence 0/∈ �f (cij (g0))), by
Clarke[3, Corollary 1, p. 56],NJij (cij (g0)) is equal to the cone generated by�f (cij (g0)).
Consequently, for eachij ∈ B(g0) and�ij ∈ �ij (g0), we have that�ij = −dij �ij for some
dij > 0 and�ij ∈ �fij (cij (g0)). Thus, from (2.21), it follows that

k∑
i=1

�i〈a∗
i , g0 − gn〉 +

m∑
j=1

dij cij (gn − g0)�ij = 0 for eachn = 1,2, . . . . (4.26)

Noting thatcij (gn) ∈ Jij , cij (g0) ∈ bdJij andB(g0) is finite, we get that, by (4.24), there
exists�p > 0 such that, for eachij ∈ B(g0),

Re((cij (gn)− cij (g0))�ij )+ �p|cij (g0)− cij (gn)|p�0 for eachn. (4.27)

Thus, by (4.18), (4.26) and (4.27), one has

supx∈F ‖x − gn‖2 � 1

rG(F )

{
k∑
i=1

�i rG(F )2 +
k∑
i=1

�i |〈a∗
i , g0 − gn〉|2

}

+2
k∑
i=1

�iRe〈a∗
i , g0 − gn〉
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+2
m∑
j=1

dijRe((cij (gn)− cij (g0))�ij )

+2�p

m∑
j=1

dij |cij (g0)− cij (gn)|p

= rG(F )
2 + 1

rG(F )

k∑
i=1

�i |〈a∗
l , gn − g0〉|2

+2�p

m∑
i=1

dij |cij (g0)− cij (gn)|p. (4.28)

Now for anyg ∈ Y , define

‖g‖� =

 k∑
i=1

�i |〈a∗
i , g〉|� +

m∑
j=1

dij |cij (g)|�



1/�

. (4.29)

Then‖ · ‖� is a norm onYequivalent to the original norm so that

‖g‖���‖g‖ for eachg ∈ Y (4.30)

for some constant� > 0. Because‖gn − g0‖ → 0, by (4.28) and (4.30),

supx∈F ‖x − gn‖2 � rG(F )
2 + 1

rG(F )

k∑
i=1

�i |〈a∗
i , gn − g0〉|�

+2�p

m∑
i=1

dij |cij (g0)− cij (gn)|�

� rG(F )
2 + min

{
1

rG(F )
, 2�p

}
‖gn − g0‖�

�

� rG(F )
2 + min

{
1

rG(F )
, 2�p

}
��‖gn − g0‖� (4.31)

holds for alln large enough. It follows from the Cauchy mean-valued theorem that

sup
x∈F

‖x − gn‖� − rG(F )
�� �

2
rG(F )

�−2
(

sup
x∈F

‖x − gn‖2 − rG(F )
2
)
. (4.32)

Therefore, by (4.25), (4.31) and (4.32)

��(gn)�
�
2
rG(F )

�−2 min

{
1

rG(F )
, 2�p

}
�� > 0,

which contradicts that��(gn) → 0. We complete the proof.�
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